HSCデータによる AGNと周辺銀河の相関解析 AGNs and galaxies cross-correlation using HSC data

国立天文台 天文データセンター 白崎裕治 NAOJ, Astronomy Data Center, Yuji Shirasaki

Contents

- 1. Introduction on study of AGN environment
 - AGN-AGN auto correlation
 - AGN-Galaxy cross correlation
- 2. AGN-Galaxy cross correlation study using Suprime-Cam archive
- 3. Perspective on AGN-Galaxy cross correlation study using HSC

Unresolved problem in AGN research

✓ Fueling mechanisms of AGN How is the AGN fueling transferred to the SMBH ?

From recent observations :

low/intermediate luminous AGN → internal
 most luminous AGN (QSO) → external

What does AGN environment tell us?

- AGN auto-correlation
 AGN
 AGN
 - correlation between different DMHs
 - large scale structure

Mass of the DMH

- AGN-galaxy cross-correlation
 - correlation within the same DMH
 - small (+intermediate) scale structure

Mass of the DMH

AGN auto-correlation

Require uniform large area survey

- 2dF Survey
- SDSS Survey
- Constant M_{DMH} below z = 3.0
- Larger M_{DMH} at higher redshift (or luminosity ?)

AGN-galaxy cross correlation (1)

- Low redshift (z < 0.6)
 - SDSS, 2dF Survey
 - Low luminosity AGN
 - r ~ 6 h⁻¹Mpc
 - similar to typical local galaxy
- Intermediate redshift ($z = 0.6 \sim 3.0$)
 - Deep survey / IR observation
 - Low/intermediate luminosity AGN
 - small sample (a few tens or less)
 - r = 3.7 ~ 6.3 h⁻¹Mpc
 - radio AGN > X-ray AGN > IR AGN (Hickox et al. 2009)

AGN-galaxy cross correlation (2)

- Subaru Suprime-Cam archive + UKIDSS
- z = 0.3 ~ 3.0
- wide luminosity range ($M_V = -30 \sim -20$)
- 1,809 AGNs

Largest samples ever achieved (at z > 0.6)

> Shirasaki et al. (2011) PASJ 63 S469

Our method • cross correlation function : ξ(r)

probability of finding a galaxy at a given separation from an AGN compared to a random distribution $\approx n(r) / n_0 - 1$

$$\omega(r_p) = \int_{-\infty}^{\infty} \xi(r_p, \pi) d\pi = \frac{1}{\rho_0} \int_{-\infty}^{\infty} (\rho(r) - \rho_0) d\pi = \frac{n(r_p) - n_{\mathrm{bg}}}{\rho_0},$$

• Stack the number density $n(r_p)$ for all the AGNs and derive the average of $\omega(r_p)$

$$\omega(r_p) = \frac{\langle n(r_p) \rangle - \langle n_{\rm bg} \rangle}{\langle \rho_0 \rangle},$$

Merit of this method

- Doesn't require redshift measurement for galaxies
 - single band image
 - Easy to obtain a large statistical sample
- Precise measurement at small scale (average)
 - Distribution of AGN in a DMH
- Free from selection bias for galaxy sample
 - all objects detected in the image can be considered

Our result (1)

- Clustering detected up to z = 1.8
- ≻ Less luminous low-z AGN
 → power law
- ≻ Luminous high-z AGN → flat distribution < 3Mpc</p>

Our result (2)

galaxy-galaxy at the local Universe

Bottom: b1-band selected

lower : radio-quiet LRG

LRG-LRG (Wake et al. 2008) upper : radio-detected LRG

Galáxy-Galaxy

20

10

 $r_0 (h^{-1} Mpc)$

Our z ~ 1.6 sample shows larger correlation length than that of the existing measurements

 \rightarrow Difference of the galaxy samples ?

Redshift

Summary of our result

- relatively large cross-correlation length was detected at z ~ 1.6
- no luminosity dependence was found between the two luminosity groups
- flat distribution at < 3 Mpc for the bright group indicates that the AGNs are distributed uniformly in their DMH
- open question:
 - nature of the large clustering found at z ~ 1.6
 redshift, luminosity, galaxy type ?
 - the small scale structure should be confirmed with higher statistic

HSC Wide Survey + QSO/AGN

Expectations for HSC

- extends redshift range beyond 2
 - but may be difficult for z > 3. IR can do a better job...
 - increase S/N by incorporating photo-z of galaxies
- o more precise study on luminosity dependence of clustering
 - known luminous AGNs + HSC low luminosity AGNs around z ~ 2
 - find a threshold where clustering becomes large
- precise measurement of cross correlation at a small scale → distribution of AGN in a DMH
- dependence on the galaxy type
 - needs help of IR data (UKIDSS, VISTA)

Detection threshold for single band analysis

Three steps strategy for writing a paper

- 1. Cross correlation study using single band data
 - simple extension of our study using the Suprime-Cam data with higher statistic.
 - This can be done quickly.
- Galaxy selection/rejection by photometric redshift
 need photo-z code and multi-band catalog
- 3. Dependence on galaxy type with the help from IR data
 - UKIDSS already there, VISTA will provides deeper catalog
 - MOIRCS archive data might also be useful.